手机:185-8068-5888
电话:023-8825-5188
邮 箱:wltk023@126.com
地 址:重庆市沙坪坝区西双大道21号2栋7-21
网址: www.weilaisky.cn
考虑到这一点,麻省理工学院计算机科学与人工智能实验室(CSAIL)的团队开发了NanoMap系统,该系统允许无人机在森林和仓库等密集环境中以每小时20英里的速度飞行。NanoMap的一个关键见解是一个非常简单的问题:该系统认为无人机在世界上的位置随着时间的推移而变得不确定,并且实际上模拟并解释了这种不确定性。“如果你想要能在人类环境中以更高速度运行的无人机,那么过于自信的地图将无济于事,”研究生Pete Florence说道,他是一篇新的相关论文的作者。“能够更好地了解不确定性的方法使我们能够在近距离飞行并避开障碍物方面获得更高的可靠性。
编程无人机面对不确定性飞行像亚马逊这样的公司对无人机有很大的想法,可以直接送货上门。但是,即使把政策问题放在一边,编程无人机也很难在城市等杂乱的空间飞行。能够在高速行驶时避开障碍物在计算上是复杂的,特别是对于小型无人机而言,这些小型无人机可以携带多少以进行实时处理。许多现有方法依赖于复杂的地图,旨在告诉无人机它们相对于障碍物的确切位置,这在具有不可预测对象的现实环境中不是特别实用。如果他们的估计位置即使只是一小段距离,他们也很容易崩溃。
泸州大疆无人机编程三是突出校企协同育人,强调发挥企业办学主体作用,推进企业参与人才培养全过程,并把这一点作为在人才培养层面落实产教融合的有效途径。四是强调对接行业产业推进专业课程建设。近年来,由教育部牵头,行业职业教育教学指导委员会组织,大疆无人机编程中心先后印发了18个大类的410个高等职业学校专业教学标准,公布了230个中等职业学校专业教学标准及5个专业仪器设备装备规范。
多年来,计算机科学家一直致力于算法,让无人机知道它们在哪里,它们周围是什么,以及如何从一个点到另一个点。诸如同时定位和映射(SLAM)之类的常用方法获取世界的原始数据并将它们转换为映射表示。但SLAM方法的输出通常不用于计划运动。这就是研究人员经常使用“占用网格”等方法的地方,其中许多测量结果被合并到三维世界的一个特定表示中。问题是这些数据既不可靠又难以快速收集。在高速行驶时,计算机视觉算法无法充分利用周围环境,迫使无人机依赖惯性测量单元(IMU)传感器的不数据,该传感器可测量无人机的加速度和旋转速度等因素。NanoMap处理这个问题的方式是,它基本上不会消除细微的细节。
未来的迭代也可能包含其他信息,例如无人机的各个深度感测测量中的不确定性。NanoMap对于通过较小空间移动的小型无人机特别有效,并且与第二个系统配合使用,该系统专注于更长距离的规划。(研究人员去年在与国防高级研究计划局(DARPA)有关的计划中测试了NanoMap。)该团队表示,该系统可用于搜索和救援,防御,包裹递送和娱乐等领域。它也可以应用于自动驾驶汽车和其他形式的自主导航。“研究人员展示了令人印象深刻的结果,避免了障碍,这项工作使机器人能够快速检查碰撞,”Scherer说。“在障碍物之间快速飞行是一项关键能力,可以更好地拍摄动作片段,更有效地收集信息以及未来的其他进展。”孩子们如何学习无人机?近几年,智能无人机(以下简称UAV)在青少年科学教育中异军突起,广泛受到关注!